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Nonlinear three-dimensional flow in the
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The three-dimensional flow in a lid-driven cuboid is investigated numerically. The
geometry is an extension to three dimensions of the lid-driven square cavity by trans-
lating the two-dimensional lid-driven cavity parallel to the third orthogonal direction.
The incompressible Navier–Stokes equations are discretized by a pseudospectral
Chebyshev-collocation method. The singularities caused by the discontinuous velocity
boundary conditions are reduced by including asymptotic analytical solutions in the
solution ansatz. The flow is computed for Reynolds numbers above the critical onset
of Taylor–Görtler vortices. Nonlinear Taylor–Görtler cells are calculated for periodic
and for realistic no-slip endwall conditions. For periodic boundary conditions the
bifurcation is either sub- or supercritical, depending on the wavenumber. The limiting
tricritical case arises near the critical wavenumber of the linear-stability problem. On
the other hand, no-slip endwall conditions have a significant effect on the supercritical
three-dimensional flow. In agreement with recent experimental results we find that
Taylor–Görtler vortices are suppressed near no-slip endwalls.

1. Introduction
The flow in a square cavity, driven by the steady tangential motion of a lid, is a

classical problem in fluid mechanics. The simple geometry makes this setup ideal to
study the behaviour of vortices in closed domains. Moreover, the lid-driven cavity is
one of the most popular numerical benchmarks.

To date most studies of the lid-driven cavity have been devoted to incompressible
Newtonian flows. In an infinitely extended cavity the small-Reynolds-number flow is
two-dimensional. In addition to a single primary vortex (Burggraf 1966) an infinite
sequence of counter-rotating viscous corner eddies exist in the two wedges formed by
the stationary rigid walls (Moffatt 1964; Pan & Acrivos 1967). When the Reynolds
number Re increases, the corner eddies grow larger and, for Re � 103, a third eddy
separates from the stationary wall near the upstream corner of the moving lid
(Schreiber & Keller 1983).

It has been shown by Koseff et al. (1983) that the flow becomes three-dimensional
at sufficiently high Reynolds numbers. The resulting flow structures have been termed
Taylor–Görtler-like vortices (for an experimental visualization, see Rhee, Koseff &
Street 1984), because of similarities of the local basic two-dimensional flow and
the resulting three-dimensional patterns with the respective flows in the Taylor and
Görtler problems (see e.g. Drazin & Reid 1981).

Most past investigations have been carried out for Reynolds numbers much
larger than the critical value for the onset of Taylor–Görtler vortices and for span
lengths which were one or three times the cavity height. Under these conditions the
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Figure 1. Geometry of the lid-driven cavity. The moving wall is shaded in grey.

Taylor–Görtler vortices are either time-dependent (Deville, Lê & Morchoisne 1992)
or strongly influenced by the finite span length, or both. Since a three-dimensional
Bödewadt-type of flow is induced by radial pressure gradients in the vicinity of
no-slip endwalls (de Vahl Davis & Mallinson 1976; Koseff & Street 1984a; Chiang,
Hwang & Sheu 1997), the precise onset of the three-dimensional flow, the dependence
on the governing parameters, and the physical mechanisms of instability remained
poorly understood (Triantafillopoulos & Aidun 1990). These and other results on
the lid-driven cavity-flow problem have been summarized by Shankar & Deshpande
(2000).

More recently, linear-stability analyses have been carried out in order to understand
the onset of Taylor–Görtler vortices. In this regard, numerical calculations for an
infinitely extended system, unperturbed by endwall effects, have played a major role.
While the neutral Reynolds number for the onset of time-dependent two-dimensional
flows is rather high (Goodrich, Gustafson & Halasi 1990; Poliashenko & Aidun
1995) the critical Reynolds number for the onset of three-dimensional Taylor–Görtler
vortices is only Re ≈ 785. The critical threshold has been calculated independently
by Theofilis (2000) and Albensoeder, Kuhlmann & Rath (2001) (see also Ding &
Kawahara 1998, 1999; Spasov et al. 2003; Shatrov, Mutschke & Gerbeth 2003).
The numerical three-dimensional linear stability analysis of Albensoeder et al. (2001)
covers a wide range of cross-sectional aspect ratios, analyses the qualitatively different
critical modes, and explains the centrifugal mechanism in terms of energy budgets
and the criterion proposed by Sipp & Jacquin (2000).

Our present investigation is concerned with finite-amplitude cavity flows at
moderately supercritical Reynolds numbers. In § 2 the problem is formulated
mathematically, the numerical method is introduced, and the code is validated. The
results of the numerical simulations are presented in § 3. Finally, the results are
summarized in the Conclusions.

2. Methods of investigation
2.1. Problem formulation

We consider the incompressible flow of a Newtonian fluid of density ρ and kinematic
viscosity ν in a square cavity of width and height d , and depth L. The flow is driven by
the tangential motion in the y-direction of the lid located at x = −d/2 (figure 1). Using
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the scales d , ν/d , d2/ν, and ρν2/d2 for length, velocity, time, and pressure, respectively,
the fluid motion is governed by the Navier–Stokes and continuity equations

∂u
∂t

+ u · ∇u = −∇p + �u, (2.1a)

∇ · u = 0, (2.1b)

which must be solved in the non-dimensional domain (x, y, z) ∈ [−1/2, 1/2]2 ×
[−Λ/2, Λ/2], where Λ = L/d is the span aspect ratio.

On the three stationary sidewalls the velocity field u = (u, v, w) must satisfy the
no-slip and no-penetration boundary conditions

u(y = ±1/2) = u(x = 1/2) = 0. (2.2)

The no-slip condition on the wall moving with velocity V requires

u(x = −1/2) = Re ey, where Re =
V d

ν
(2.3)

is the Reynolds number.
In the z-direction two sets of boundary conditions will be used. The real,

experimental flow conditions must be modelled by rigid boundary conditions

u(z = ±Λ/2) = 0. (2.4)

On the other hand, the periodic boundary conditions

u(z = Λ/2) = u(z = −Λ/2) and p(z = Λ/2) = p(z = −Λ/2) (2.5)

allow the investigation of two- and three-dimensional flows unperturbed by the
endwalls, except for enforcing the periodicity. These boundary conditions should
adequately model the flow in the central region of an extended system when Λ � 1.

2.2. Numerical methods

The problem is solved by three-dimensional simulation using an extension of the
two-dimensional method of Botella & Peyret (1998) and Botella (1998) in which the
flow is calculated in primitive variables. The spatial discretization in the (x, y)-plane is
based on PN–PN−2 Chebyshev collocation (Peyret 2002) on a Nx ×Ny Gauss–Lobatto
grid. The interpolation polynomials are of order N for the velocities and of order
N − 2 for the pressure. Owing to this ansatz, boundary conditions for the pressure
need not be specified. For the discretization in the z-direction we have to distinguish
between rigid and periodic boundary conditions. For rigid boundary conditions the
same discretization is used as for the x- and y-directions. For periodic boundary
conditions we employ the Fourier modes

f (z) =

(Nz−1)/2−1∑
n=−(Nz−1)/2

ane
inπz (2.6)

of the Fourier space FN−2 on an equidistant grid. Using this ansatz the boundary
conditions at the endwalls can be changed easily from rigid to periodic, and vice
versa, by replacing the respective derivative matrices.

The time integration is accomplished by an Adams–Bashforth Euler-backward
method which is second order in time for the velocity components and the pressure
(Botella & Peyret 1998; Heinrichs 1998). The Darcy problem arising in the projection
step is solved by the Uzawa method. The leading equations are of Helmholtz-type and
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they are solved by a direct Helmholtz solver (Haidvogel & Zang 1979; Haldenwang
et al. 1984).

In the lid-driven-cavity problem the boundary conditions are singular at the corners
made by the moving and the steady walls. To improve the accuracy, the asymptotic
solutions for vanishing distance from the edge of the respective two-dimensional edge
problems (Hancock, Lewis & Moffatt 1981; Gupta, Manohar & Noble 1981) are
incorporated into the ansatz. This reduces the order of the singularities at the two
edges (x, y, z) = (−1/2, ±1/2, z) for the remaining numerical problem. The asymptotic
solutions are considered up to second order. The first-order asymptotic solutions are
the solutions of the Stokes-flow edge problems. The second-order term takes into
account nonlinear inertia corrections to the creeping-flow approximation. Hence, the
full solution (u, p) is written as a sum of the two-dimensional asymptotic solutions
for both edges [uc,i(x, y), pc,i(x, y)] and the deviation (u∗, p∗) from the full solution:

u =

2∑
i=1

uc,i + u∗, p =

2∑
i=1

pc,i + p∗. (2.7)

Numerically, we solve for u∗ and p∗ instead of u and p. For periodic boundary
conditions the order of all singularities is reduced by this approach. For rigid boundary
conditions in the z-direction not all singularities can be reduced: the discontinuity
of the tangential velocities along the edges between the endwalls and the moving
wall prevail. Yet, the accuracy of the numerical solution in the bulk of the cavity is
improved by the ansatz (2.7). A detailed description of the numerical method and its
convergence for rigid and periodic boundary conditions is given in Albensoeder &
Kuhlmann (2005) and Albensoeder (2004).

In order to compare the results of the numerical simulation with accurate stability
analyses, the linear-stability methods employed in Albensoeder et al. (2001) were
re-coded using the same collocation method and the subtraction of the corner
singularities as for the three-dimensional simulation. The re-formulation is required for
a consistent comparison between linear and nonlinear results. The stability analysis is
very useful for an accurate determination of the type of bifurcation if the bifurcation is
only weakly sub- or supercritical. Moreover, the stability analysis based on the present
collocation method allows an independent comparison with the linear-stability results
of Albensoeder et al. (2001).

2.3. Validation of the numerical simulation

To validate the numerical-simulation code comparisons are made with existing data
for steady and time-dependent flows. For comparisons of steady states, the computed
flow was considered converged to the true steady state after the rates of change of
the velocity components have become sufficiently small, satisfying the criterion

maxx,i |ui(x, t) − ui(x, t − �t)|
�t |Re| � εs, with εs = 10−7. (2.8)

For all test cases considered, the flow for sufficiently large times was found to be
independent of the initial conditions.

One of the standard benchmarks is the steady two-dimensional flow for Re= 1000.
We find the velocity fields of the converged flow state to be identical up to the
last significant decimal figures of the data tabulated by Botella & Peyret (1998) and
Botella (1998) (see also Albensoeder & Kuhlmann 2005).
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Figure 2. (a) Normal velocities on the centrelines (x, 0, 0) and (0, y, 0) in the cubic cavity for
Λ= 1 using a resolution Nx × Ny × Nz = 32 × 32 × 24. The Reynolds numbers are Re= 100
(dashed line), Re= 400 (dotted line), and Re= 1000 (solid line). The symbols � (Re= 100), �
(Re= 400), and � (Re= 1000) represent the results of Ku et al. (1987), extracted from their
figures. (b) Velocities u(x1) (solid line, �), u(x2) (dotted line, �), and v(x3) (dashed line, �) as
functions of time t for Re= 1000, and Λ= 2. The velocities are monitored at x1 = (0, 0.40908, 0),
x2 = (0, −0.27777, 0), and x3 = (0, −0.29797, 0). The resolution is Nx × Ny × Nz = 32 × 32 × 32.
Symbols indicate the results of Guermond et al. (2002).

As a second test case, the three-dimensional flow in a cubical cavity (Λ = 1) is
considered. In figure 2(a) the velocity profiles of u and v on the centrelines (0, y, 0)
and (x, 0, 0) are displayed in comparison to the results of Ku et al. (1987) for Re = 100,
Re = 400 and Re =1000. As can be seen in figure 2(a) the present calculations (lines)
are in very good agreement with the results of Ku et al. (1987) (symbols).

Finally, a comparison is made for a three-dimensional transient flow in a cavity
whose lid was suddenly set into motion with Re =103. This case has been studied by
Guermond et al. (2002) for an aspect ratio Λ =2. In figure 2(b) three velocities are
monitored as functions of time. The monitoring locations are chosen near the location
of the extremal velocities on the centrelines (see figure 2a). Again the correlation
between the present results and those of Guermond et al. (2002) is very good. Further
comparisons and validation data are given in Albensoeder & Kuhlmann (2005) and
Albensoeder (2004).

2.4. Validation of the linear-stability analysis

The linear-stability problem for the steady two-dimensional flow was solved in
Albensoeder et al. (2001). It was shown that four different instability branches exist,
depending on the cross-sectional aspect ratio Γ . For all branches the instability is
due to centrifugal effects.

The most dangerous three-dimensional perturbation (ũ, p̃) of the basic two-
dimensional flow (u0, p0) takes the form of a normal mode (ũ, p̃) = (û, p̂)(x, y) ×
exp[σ t + i(kcz − Ωct)] which is a wave characterized by the wavenumber kc in the
z-direction. For the square cavity, the critical oscillation frequency vanishes: Ωc = 0.

The results for the square cavity obtained in Albensoeder et al. (2001) have been
confirmed independently by Spasov et al. (2003) and by Shatrov et al. (2003), and
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Nx × Ny

Rec kc Ωc Nx × Ny (error estimate)

Present 783.9 ± 0.4 15.446 ± 0.003 0.0 34 × 34 42 × 42
Albensoeder et al. (2001) 786 ± 6 15.43 ± 0.06 0.0 141 × 141 71 × 71
Shatrov et al. (2003) 784.22 15.450 ± 0.005 0.0 71 × 71 −
Spasov et al. (2003) 785 15.40 0.0 141 × 141 −
Theofilis (2000) 782 15.4 0.0 48 × 48 −
Theofilis et al. (2004) 782.61 15.37 0.0 48 × 48 −

Table 1. Comparison of the critical parameters to results from Albensoeder et al. (2001)
and other authors. The error is estimated by comparison with the critical data obtained by
calculations with a lower resolution given in the last column.

they are in agreement with the values for the square cavity of Theofilis, Duck & Owen
(2004). Our previous linear-stability results also agree nicely with the critical data
of the present linear-stability analysis which is based on collocation. A quantitative
comparison is provided in table 1. Further confidence is gained from the coincidence
of the critical data with the corresponding results of the full three-dimensional
simulations. It should be mentioned, however, that the critical data obtained by both
of our independent linear-stability analyses as well as by our numerical simulations
differ significantly from the critical data reported by Theofilis et al. (2004) when the
cross-section is not a square (Γ �= 1).

3. Results
The critical three-dimensional flow in the square cavity consists of steady Taylor–

Görtler vortices (Albensoeder et al. 2001). Slightly above the threshold the spectrum
of excited Fourier modes in the z-direction is confined to a narrow band around the
critical wavenumber kc (see e.g. Newell & Whitehead 1969). Hence, we are primarily
interested in spatial periods Λ comparable to the critical wavelength λc = 2π/kc.

When the Reynolds number is increased quasi-statically past its critical value the
slightly supercritical flow for λc = 2π/kc remains stationary. The spectrum of the flow
is obtained from the simulation data by discrete Fourier transform. For example, the
complex amplitudes aw,m(x, y) of the transverse velocity field w(x, y, z, t) are

aw,m(x, y) =
1

Nz − 1

Nz−1∑
i=1

w(x, y, zi)e
2πim(i−1)/(Nz−1). (3.1)

The wavenumber of the mth Fourier mode is k = m k0, where k0 = 2π/Λ, and the
modulus Aw,m of each Fourier mode of w is given by

Aw,m = |aw,m|. (3.2)

In the following, the three-dimensional time-dependent problem (2.1)–(2.2) is solved
using the periodic boundary conditions (2.5).

3.1. Bifurcation for k0 = kc

In a first step, the span aspect ratio is fixed to the critical wavelength Λ = λc =
2π/kc =0.407, i.e. k0 = kc. Figure 3(a) shows the fundamental (m =1) amplitude
of the y-component of the steady-state velocity Av,m = 1 (solid line, �) at the
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Figure 3. (a) Fourth power of the amplitude Av,m = 1(x0, y0) (solid line, �) and of
maxx,y Av,m = 1(x, y) (dash-dotted line, �) as functions of the Reynolds number Re. The
dashed line marks the results of the linear stability analysis. The dotted line shows the
results of Albensoeder et al. (2001). (b) Amplitudes Av,m(x0, y0) with m= 1 (solid line, �),
m= 2 (dotted line, �) and m= 3 (dashed line, �) as functions of ε = (Re − Rec)/Rec . In
both plots Λ= 2π/kc =0.407. The amplitudes are evaluated at (x0, y0) = (0.263, −0.337) using
Nx×Ny×Nz = 34×34×25 grid points (lines). The resolution of the convergence-test calculations
(symbols) is Nx × Ny × Nz = 42 × 42 × 25.

monitoring point (x0, y0) = (0.263, −0.337) as well as its maximum in the (x, y)-
plane, maxx,y Av,m =1(x, y) (dash-dotted line, �) as functions of the Reynolds number.
Symbols indicate data which were computed with a higher resolution. The good
agreement between the results obtained for different resolutions indicates grid
convergence of each calculation.

Both curves in figure 3(a) indicate a supercritical bifurcation. The present results
can be compared with the stationary solutions of the amplitude equation in the
absence of spatial variations (see e.g. Cross & Hohenberg 1993)

dA

dt
= εA + c2 |A|2 A + c4 |A|4 A + · · · (3.3)

where

ε =
Re − Rec

Rec

. (3.4)

Thus the amplitude should bifurcate either as a square root (c2 �= 0) or as
the fourth root of ε (c2 = 0). However, the amplitude at the monitoring point
(x0, y0) = (0.263, −0.337) (solid line) does not seem to behave as expected.

To quantify the Reynolds-number dependence of Av,m(ε) a log-log plot is provided
in figure 3(b) for the first three harmonics m ∈ 1, 2, 3. The curves are nearly linear.
By a regression

Av,m = A(0)
v,mεαm (3.5)

we find an exponent α1 = 0.345±0.019 ≈ 1/3 for the fundamental Fourier mode m =1
(see also table 2). The error was estimated from the coefficients obtained for low and
high grid resolutions. The exponents of the first three harmonics can be approximated
by αm ≈ 1/3 + 0.3(m − 1) with m =1, 2, 3.

Since the maximum amplitude maxx,y Av,m =1(x, y) (dash-dotted line in figure 3a)
shows a similar dependence on Re as the amplitude at the fixed location, the
unexpected scaling cannot be due to a spatial variation of the maximum of the
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m αm A(0)
v,m

1 0.345 ± 0.019 121.7 ± 9.7
2 0.747 ± 0.008 24.32 ± 0.52
3 1.020 ± 0.072 7.0 ± 1.9

Table 2. Approximation of the amplitude by Av,m = A
(0)
v,mεαm for Λ= 2π/kc =0.407. The

coefficients were calculated by regression of the data from figure 3(b). The errors were estimated
by comparing resolution of Nx × Ny × Nz = 34 × 34 × 25 and Nx × Ny × Nz = 42 × 42 × 25.
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Figure 4. (a) Neutral curve of the linear stability analysis (solid line) and the nonlinear
existence boundary of Taylor–Görtler-vortex pairs (�) as functions of the span aspect ratio Λ
and the wavenumber k = 2π/Λ, respectively. The error bars show the stepsize of the quasi-static
parameter variation. The dashed and dashed-dotted lines marks the neutral curve with two
and three Taylor–Görtler-vortex pairs. (b) Amplitude Av,m =1(x0, y0) as a function of the span
aspect ratio Λ and the wavenumber k = 2π/Λ for Re= 800 (�), Re =825 (�) and Re =850
(�). Arrows indicate the loci where solution jumps were detected. The amplitude is evaluated
at (x0, y0) = (0.263, −0.337). The dash-dot line marks the critical wavelength λc and the critical
wavenumber kc . The resolution is Nx × Ny × Nz = 34 × 34 × 25 for both plots.

amplitude with ε. Within the investigated range of ε ∈ [0; 0.1] the (x, y)-location of
the maximum amplitude varies only by (�x, �y) ≈ (0.045, 0.015).

3.2. Variation of the span aspect ratio Λ

For an exploration of the nonlinear behaviour the span aspect ratio Λ was varied. In
order to ensure that the time-asymptotic solution is obtained when computing steady
flows the calculation for each parameter set was continued until (2.8) was satisfied. In
cases in which the time-asymptotic flow is oscillatory the integration was terminated
after a periodic state was reached. For strongly supercritical flows the integration
time was at least T =0.5 for each parameter set. For near-critical conditions, the
computation time was increased up to T = O(50 ).

The results of the calculations are shown in figure 4(a) where the amplitude
Av,m = 1(Λ) is displayed for the slightly overcritical Reynolds numbers Re = 800, 825,
and 850. As can be seen, the bifurcation to Taylor–Görtler vortices changes its
type: for Λ � λc the bifurcation is supercritical, whereas it is subcritical for Λ � λc.
The corresponding hysteresis is indicated by arrows in figure 4(b). Owing to the
transition from a super- to a subcritical bifurcation near Λ =2π/kc quintic terms
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in the amplitude equation (3.3) must be taken into account. Hence, the steady-state
solution must satisfy

ε = c2A
2
v,m=1 + c4A

4
v,m=1 (3.6)

or, for the positive branch of the bifurcation,

Av,m=1 =

√
c2

2c4

√√√√−1 ±
√

1 +
4c4

c2
2

ε. (3.7)

Nonlinear regression yields the coefficients c2 = 9.759 × 10−6 and c4 = 1.015 × 10−8.
Since the bifurcation at k = kc is supercritical (c2 > 0) the sign of the inner square root
must be positive. A Taylor expansion of (3.7) for ε → 0 shows that the bifurcating
amplitude can be approximated by

Av,m=1 =
√

ε/c2 (3.8)

when ε 	 c2
2/4c4 ≈ 1/400. On the other hand, the amplitude grows like ∼ε1/4 for

ε � O(0.1), i.e. for 1 	 (4c4ε/c
2
2)

1/2. Owing to the magnitudes of the coefficients c2 and
c4 the square-root behaviour of the bifurcation is not visible on the scale ε ∈ [0; 0.1]
for which the calculations were carried out. Figure 3 shows the intermediate range
between the asymptotic limit Av,m = 1(ε → 0) ∝ ε1/2 and Av,m = 1(ε � 1) ∝ ε1/4. The
average exponent of Av,m =1 on this intermediate ε-scale is α1 = 0.345. Because of the
critical slowing down, calculations for smaller values of ε could not be carried out
within a reasonable time.

3.3. Nonlinear stability boundaries

The loci Λ∗(Re) at which the three-dimensional flow becomes the two-dimensional
basic flow are shown in figure 4(a) in the (Λ, Re)-plane or, equivalently, the (k, Re)-
plane with k = 2π/Λ. The neutral stability boundaries are also shown. For Λ � λc the
nonlinear stability limit Λ∗ coincides with the neutral Reynolds number within the
error bounds and the transition is continuous. The bifurcation is supercritical (c2 > 0)
for the corresponding wavelengths. In contrast, the bifurcation is subcritical (c2 < 0)
for Λ � λc, i.e. the coefficient c2 changes sign near Λ ≈ λc. Hence, the Taylor–Görtler
vortices break down discontinuously and a tricritical bifurcation point (c2 = 0) must
exist for a wavelength slightly larger than λc.

When the Reynolds number is sufficiently large the span aspect ratio Λ∗ at which the
three-dimensional Taylor–Görtler vortices break down to the two-dimensional flow
for λ > λc meets the linear stability boundary for the flow with two pairs of Taylor–
Görtler vortices (dashed line in figure 4a) at Λ ≈ 0.6 between Re = 873 and Re = 900.
For Re = 850 the single Taylor–Görtler vortex pair breaks down at Λ =0.558 ± 0.001
(� in figure 5) and two pairs of Taylor–Görtler bifurcate supercritically (dashed line
in figure 4a) upon an increase of Λ. However, for Re � 900 the nonlinear flow of
one pair of Taylor–Görtler vortices transforms smoothly, upon an increase of the
span aspect ratio, into a flow consisting of two pairs of Taylor–Görtler vortices. This
is shown in figure 5 in which the Fourier modes m =1 and m =2 are displayed as
functions of Λ. For Re= 1000 the amplitude of the second harmonic m =2 grows
larger than the amplitude of the fundamental mode m =1 (� in figure 5) when
Λ � 0.62. While the fundamental mode disappears at Λ∗ =0.795 ± 0.013, beyond the
linear stability boundary for two pairs of Taylor–Görtler vortices, the amplitude of
the second harmonic m =2 continues to grow with Λ. The three rightmost Λ∗-points
in figure 4(a) thus do not mark the collapse of the three-dimensional flow to the basic
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Figure 5. Amplitudes Av,m = 1 (solid line) and Av,m =2 (dotted line) as functions of the span
aspect ratio Λ for a quasi-static variation of Λ. Symbols denote the Reynolds numbers,
Re= 850 (�) and Re= 1000 (�). The amplitudes are evaluated at (x0, y0) = (0.263, −0.337)
and the resolution is Nx × Ny × Nz = 34 × 34 × 25.

two-dimensional flow, but rather the disappearance of the fundamental mode m =1.
At these bifurcation points the character of the flow has completely changed to a
state with two pairs of Taylor–Görtler vortices.

The neutral curves for a number nTG ∈ {1, 2, 3, 4, . . .} of Taylor–Görtler vortex
pairs have identical minima at equally spaced span aspect ratios Λ = nTGλc (figure 4a).
Since the neutral curves become flatter as nTG increases, the envelope of all neutral
curves approaches the line Re = Rec as Λ → ∞. We find that the bifurcation upon
increasing Re does not depend on the number of Taylor–Görtler vortices when the
aspect ratio is an integer multiple of the critical aspect ratio Λ = nTGλc, indicating
the absence of sideband instabilities for these values of nTG. At a fixed supercritical
Reynolds number, however, the modification of the flow upon a variation of Λ

depends on nTG, because the relative amount of compression or dilatation in order
to create or annihilate, respectively, a pair of vortices depends on nTG.

Figure 6 shows the loci Λ∗ at which the fundamental harmonic of the flow state
consisting of one (�), two (�), three (�), and four (©) Taylor–Görtler vortex pairs
vanishes on a quasi-static increase or decrease of Λ, keeping the Reynolds number
fixed, or on a quasi-static decrease of Re while keeping the span aspect ratio Λ

constant. Which of the two parameters was varied can be seen from the error bars
which indicate the step size of the quasi-static variation.

The flows which arise beyond the nonlinear stability boundaries are characterized
in figure 7. We first consider two steady Taylor–Görtler vortex pairs. If Re � 850 the
Taylor–Görtler vortices lose their stability to a time-dependent state (� in figures 6 and
7) when the aspect ratio Λ is increased from Λ =2λc. For Λ < 2λc the transformation
from two pairs to a single Taylor–Görtler vortex pair is continuous, as discussed
above. Along line a in figure 7 the Fourier mode m =2 vanishes. The locus is equal
to the nonlinear stability boundary of a single Taylor–Görtler vortex pair. Along line
b the Fourier mode m = 1 is established upon a decrease of Λ. If Re < 850 the flow
with two pairs becomes two-dimensional for Λ < Λ∗.

For three Taylor–Görtler vortex pairs (� in figures 6 and 7) a decrease of Λ results
in an oscillating flow state when Re � 850, similar to an increase of Λ for two Taylor–
Görtler vortex pairs. We investigated neither the nature of these transitions nor a
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Figure 6. Nonlinear stability boundaries of one (�), two (�), three (�) and four (©)
Taylor–Görtler-vortex pairs as functions of the span aspect ratio Λ (a) and as functions
of the wavelength λ and wavenumber k = 2π/λ (b). Error bars mark the stepsize of the
quasi-static variation of the respective parameter. The solid line denotes the curve of neutral
stability. The theoretical Eckhaus-stability boundary for ε → 0 is shown as a dotted line in (b).
The numerical resolution in the (x, y)-plane was Nx =Ny = 34, while the resolution in span
direction was Nz =25 for Λ= λc (�), Nz =51 for Λ= 2λc (�), Nz = 71 for Λ= 3λc (�), and
Nz =95 for Λ= 4λc (©).
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Figure 7. Nonlinear stability boundaries of one (�), two (�), three (�) and four (©)
Taylor–Görtler-vortex pairs as functions of the span aspect ratio Λ. All parameters are
the same as in figure 6(a). The roman numerals indicate the number of Taylor–Görtler-vortex
pairs.

possible hysteresis with respect to variations of Λ between both three-dimensional
time-dependent states. On increasing Λ for Re � 850, the three steady Taylor–Görtler-
vortex pairs are replaced by Taylor–Görtler vortices with nTG = 4. The four-pair flow
is spatially modulated with a subharmonic mode m =2. For lower Reynolds numbers
the steady Taylor–Görtler vortices again give way to the two-dimensional basic state
at Λ∗.
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Considering four Taylor–Görtler vortex pairs (© in figures 6 and 7) we find a
transition to a spatially modulated flow upon a decrease of Λ when Re � 850. The
dominant Fourier mode in the new flow still is m =4, but also the subharmonic mode
m =2 is excited. A further decrease of Λ leads to three Taylor–Görtler vortex pairs
(m =3) at the line labelled c in figure 7. At this line the amplitudes of the Fourier
modes with m =2 and m =4 vanish. Increasing Λ from Λ =4λc the steady four-pair
flow changes into a five-pair flow. For Re= 850 and Re = 900 the five-pair flow is
found to be steady, whereas it is time-dependent for Re= 1000. As before, the three
lowermost points in figure 7 indicate the transition to the two-dimensional basic state.

The wavelength λ=Λ∗/nTG at which the fundamental Fourier mode of the state
with nTG vortex pairs vanishes depends non-monotonical on nTG. From figure 6(a, b)
there is a strong tendency that the λ-range of stable Taylor–Görtler vortices shrinks as
the number of vortex pairs is increased. In the infinite system (nTG → ∞) a continuous
wavenumber band of Taylor–Görtler vortices is available. The stable range of wave
numbers is reduced by the long-wave Eckhaus instability (Eckhaus 1965; Fauve
1998). Near the critical point the reduction amounts to εEckhaus = 3εneutral (dotted line
in figure 6b). For the present finite-length system with nTG =1, 2, 3, 4 the Eckhaus
stability boundary is not obtained for small ε and the stable range of Taylor–Görtler
vortices extends close to the neutral curve. Apparently, there is no nearby wavelength
in the short system available to be amplified. For larger values of ε, however, the
result for the largest system investigated (nTG =4) may approximate the Eckhaus
instability boundary, which is usually much narrower in the strongly nonlinear regime
than the band extrapolated from the slightly nonlinear analysis (see e.g. Riecke &
Paap 1986).

Finally, it should be noted that the flow oscillations and modulations found between
the nonlinear stability boundaries of nTG Taylor–Görtler vortex pairs could be related
to the periodicity condition, which considerably restricts the solution space and allows
only an even number of Taylor–Görtler vortices. Other methods of investigation must
be developed for the computation of long-wavelength effects when infinite systems
are to be simulated. A mere extension to larger span aspect ratios is prohibited due
to the high numerical cost associated with the increased resolution required in the
z-direction.

3.4. Endwall effects

The presence of rigid endwalls at z = ±Λ/2 has a considerable influence on the Taylor–
Görtler vortices which are caused by a bulk-flow instability. The endwall effect was
demonstrated experimentally in Albensoeder et al. (2001) where the onset of Taylor–
Görtler vortices in a square cavity with Λ = 6.55 was measured. For Re= 850 we have
found that Taylor–Görtler vortices can exist only within a certain distance from the
rigid endwalls in a region symmetrically located in the middle of the cavity around
z = 0 (figure 8a). In the near-wall regions 1 � |z| <Λ/2 the Taylor–Görtler vortices
are suppressed.

To validate this experimental result the flow was simulated for Λ = 6.55 and
Re= 850 using rigid boundary conditions at z = ±Λ/2. Within the definition of
εs < 10−7 the numerical solution is steady. For a visual comparison iso-surfaces of
the absolute value |ωx | of the x-component of the vorticity are shown in figure
8(b). The numerical result is in qualitative agreement with the experimental one. We
conclude that a minute leakage of liquid from the cavity to the surrounding liquid
bath near the cavity endwalls, which cannot be completely avoided in the experiment,
is not responsible for the suppression of the Taylor-Görtler vortices. Hence, an
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Figure 8. (a) Stationary Taylor–Görtler vortices for Λ= 6.55 and Re= 850 reproduced from
Albensoeder et al. (2001). The flow was visualized by aluminium flitters and illuminated in the
plane y ≈ − 1/2 by a light sheet with a thickness of approximately 10% of the cavity height.
The flow is from the top to the bottom where the fluid is accelerated by the moving wall.
(b) Numerical simulation of the flow for the same parameters as in (a). Shown are vorticity
iso-surfaces |ωx | = 210. The resolution is Nx × Ny × Nz = 30 × 30 × 300.
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Figure 9. Velocity v(0.263, −0.337, z) for rigid (solid line) and periodic (dotted line) boundary
conditions as function of the coordinate z for Re= 850. The aspect ratios and resolutions are
(Λ= 6.55, Nx × Ny × Nz = 30 × 30 × 300) for rigid boundary conditions and (Λ= 0.407,
Nx × Ny × Nz = 34 × 34 × 25) for periodic boundary conditions.

explanation in terms of a reduced centrifugal effect in the vicinity of both endwalls
(see Albensoeder et al. 2001) is likely. To provide quantitative data, we show in figure 9
the velocity component v as a function of z along the line (x, y) = (0.263, −0.337) for
rigid and periodic boundary conditions.

This explanation is also supported by the results obtained by a variation of
the Reynolds number at a constant aspect ratio. When the Reynolds number is
reduced quasi-statically the Taylor–Görtler vortices break down at Re = 835 ± 5. This
critical Reynolds number is close to the experimentally determined critical Reynolds
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number Reexp
c (Λ = 6.55) = 810 ± 15 measured by Albensoeder et al. (2001) and is only

about 6% larger than the critical Reynolds number for the infinite system (periodic
boundary conditions). If, on the other hand, the span aspect ratio is reduced quasi-
statically for a constant Reynolds number of Re =850 the Taylor–Görtler vortices
vanish at Λc(Re = 850) = 6.1 ± 0.1. The early breakdown confirms the sensitivity of
the onset of Taylor–Görtler vortices to the aspect ratio for rigid endwall boundary
conditions.

These numerical results for rigid boundary conditions confirm our previous
experimental findings (Albensoeder et al. 2001) and extend other investigations, most
of which have been carried out for Λ � 3 (see e.g. Koseff et al. (1983); Koseff &
Street (1984a , b); Prasad & Koseff (1989); and others).

3.5. Comparison with Taylor vortices

Taylor–Görtler vortices in the square cavity are similar to Taylor vortices in the
Taylor–Couette system when the outer cylinder is at rest (see e.g. DiPrima & Swinney
1985). In the cavity the basic two-dimensional flow consist of a primary vortex in
nearly solid-body rotation with its centre at (x, y) ≈ 0. In the Taylor–Couette system
the inner rotating cylinder plays the role of the vortex in solid-body rotation.

To estimate the equivalent radius R1 and the rotation rate Ω1 of the primary vortex
in the cavity the region of constant vorticity ω0 on the centrelines x =0 and y = 0 of
the two-dimensional basic flow has been determined at critical conditions. We obtain
R1 ≈ 0.27 and Ω1 ≈ ω0(r = 0)/2 ≈ 825. The radius of the fictitious outer cylinder can
be approximated by the wall and the streamline separating the primary vortex from
the secondary vortices. Along the separating streamline the velocity u0 is negligibly
small; and it vanishes on the rigid walls, which corresponds to stationary boundary
conditions R2Ω2 ≈ 0.

For a comparison of the critical conditions in the cavity with those in circular
Couette flow the critical Reynolds number and the critical wavenumber are non-
dimensionalized by the scales typically used for the Taylor–Couette system, namely
the gap width d̃ = R2 − R1 = 0.23 and the velocity of the inner cylinder R1Ω1 ≈ 223.
Taking into account that these length and velocity scales are in units of d and ν/d ,
respectively, we obtain the equivalent critical Reynolds number and wavenumber
(superscript TC)

ReTC
c = R1Ω1d̃ ≈ 51 and kTC

c = kcd̃ ≈ 3.5, (3.9)

where kc = 15.43 is used (table 1). The equivalent radius ratio for the cavity flow is
η = R1/R2 = 0.54.

These values are to be compared with the critical data for the onset of Taylor
vortices. For η = 0.55 DiPrima, Eagles & Ng (1984) obtained ReTC

c =69.5 and
kTC

c = 3.155. The cavity data are of the same order of magnitude and deviate by about
30 % and less than 10 %, respectively, from the critical data in the ‘Taylor–Couette
system. This qualitative comparison justifies the notion of ’Taylor–Görtler vortices’
for the cavity vortices and underlines the centrifugal character of the instability
mechanism as proposed by Albensoeder et al. (2001).

4. Conclusions
The three-dimensional flow in the one-sided lid-driven square cavity has been

investigated by numerical simulations based on a Chebyshev collocation method. The
accuracy of the numerical calculations was significantly improved by incorporating
local asymptotic solutions in analytical form for the flow in the vicinity of the singular
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corners. Various flows have been computed for parameters near and above the critical
point, including both periodic and rigid boundary conditions in the z-direction.

We found that the bifurcation is supercritical for periodic boundary conditions
corresponding to the critical wavelength Λ = λc. By comparing the numerically
calculated time-asymptotic solutions with the steady-state solutions of a fifth-order
amplitude equation it was shown that the amplitude for Λ = λc scales like ε1/2 only
in the narrow range ε 	 1/400. On typical scales, however, the amplitude of the
three-dimensional flow grows like ε1/4. This behaviour can be understood if one takes
into account the dependence of the bifurcation on the period Λ: the flow for Λ � λc

bifurcates supercritically, whereas it bifurcates subcritically for Λ � λc.
Calculations for periodic boundary conditions and periods much larger then the

critical wavelength have shown that the stable band of wavenumbers is significantly
reduced if ε is large, an effect which is expected from the Eckhaus instability. For
ε → 0, however, the linearly unstable band is also recovered for the largest values of
Λ considered.

Computations carried out for rigid endwall conditions confirmed the experimental
results of Albensoeder et al. (2001). Rigid endwalls suppress Taylor–Görtler vortices
within a certain distance from the walls. Hence, Taylor–Görtler vortices in the driven
cavity can only be observed for sufficiently large span aspect ratios Λ.

This work has been supported by Deutsche Forschungsgemeinschaft under grant
numbers Ku896/5-2 and Ku896/8-1. All computations were performed at the Center
of Applied Space Technology and Microgravity (ZARM) of the University of Bremen.
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